\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^2 (d+e x)} \, dx\) [451]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 40, antiderivative size = 240 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=-\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {\sqrt {c} \sqrt {d} \left (c d^2+3 a e^2\right ) \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (3 c d^2+a e^2\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {d}} \]

[Out]

1/2*(3*a*e^2+c*d^2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x
^2)^(1/2))*c^(1/2)*d^(1/2)/e^(1/2)-1/2*(a*e^2+3*c*d^2)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2)*x)/a^(1/2)/d^(1/2)/e
^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*a^(1/2)*e^(1/2)/d^(1/2)-(-c*d*x+a*e)*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(1/2)/x

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {863, 826, 857, 635, 212, 738} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\frac {\sqrt {c} \sqrt {d} \left (3 a e^2+c d^2\right ) \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (a e^2+3 c d^2\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{2 \sqrt {d}}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} (a e-c d x)}{x} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-(((a*e - c*d*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/x) + (Sqrt[c]*Sqrt[d]*(c*d^2 + 3*a*e^2)*ArcTanh[
(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[
e]) - (Sqrt[a]*Sqrt[e]*(3*c*d^2 + a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt
[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(2*Sqrt[d])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 826

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m +
 2*p + 2))), x] + Dist[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*(
b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*p
 + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
  !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 857

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 863

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + c*(
x/e))*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rubi steps \begin{align*} \text {integral}& = \int \frac {(a e+c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^2} \, dx \\ & = -\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\frac {1}{2} \int \frac {-a e \left (3 c d^2+a e^2\right )-c d \left (c d^2+3 a e^2\right ) x}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = -\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {1}{2} \left (a e \left (3 c d^2+a e^2\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx+\frac {1}{2} \left (c d \left (c d^2+3 a e^2\right )\right ) \int \frac {1}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx \\ & = -\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}-\left (a e \left (3 c d^2+a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )+\left (c d \left (c d^2+3 a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d e-x^2} \, dx,x,\frac {c d^2+a e^2+2 c d e x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right ) \\ & = -\frac {(a e-c d x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x}+\frac {\sqrt {c} \sqrt {d} \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {e}}-\frac {\sqrt {a} \sqrt {e} \left (3 c d^2+a e^2\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{2 \sqrt {d}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.89 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=-\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {d} \sqrt {e} (a e-c d x) \sqrt {a e+c d x} \sqrt {d+e x}-\sqrt {c} d \left (c d^2+3 a e^2\right ) x \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )+\sqrt {a} e \left (3 c d^2+a e^2\right ) x \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} \sqrt {d+e x}}{\sqrt {d} \sqrt {a e+c d x}}\right )\right )}{\sqrt {d} \sqrt {e} x \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x]

[Out]

-((Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[d]*Sqrt[e]*(a*e - c*d*x)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x] - Sqrt[c]*d*
(c*d^2 + 3*a*e^2)*x*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x])] + Sqrt[a]*e*(3*c*d^2
+ a*e^2)*x*ArcTanh[(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])/(Sqrt[d]*Sqrt[a*e + c*d*x])]))/(Sqrt[d]*Sqrt[e]*x*Sqrt[(a*e
 + c*d*x)*(d + e*x)]))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1299\) vs. \(2(202)=404\).

Time = 0.72 (sec) , antiderivative size = 1300, normalized size of antiderivative = 5.42

method result size
default \(\text {Expression too large to display}\) \(1300\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

1/d*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+3/2*(a*e^2+c*d^2)/a/d/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*
d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/
8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+
c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*
a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*
ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)))+4*c/a*(1/8*(2*c*d*e*
x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/16*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(
2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e
*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))))-e/d^
2*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*
e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*
e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2
)+1/2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c
*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^
(1/2))/x)))+e/d^2*(1/3*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(3/2)+1/2*(a*e^2-c*d^2)*(1/4*(2*c*d*e*(x+d/e)+e
^2*a-c*d^2)/c/d/e*(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2)-1/8*(a*e^2-c*d^2)^2/c/d/e*ln((1/2*e^2*a-1/2*c*
d^2+c*d*e*(x+d/e))/(c*d*e)^(1/2)+(c*d*e*(x+d/e)^2+(a*e^2-c*d^2)*(x+d/e))^(1/2))/(c*d*e)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 1.33 (sec) , antiderivative size = 1221, normalized size of antiderivative = 5.09 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="fricas")

[Out]

[1/4*((c*d^2 + 3*a*e^2)*sqrt(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2
*x + c*d^2*e + a*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) +
 (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*sqrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x
^2) + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/4*(2*(c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x
*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^
2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^2)*x)) - (3*c*d^2 + a*e^2)*sqrt(a*e/d)*x*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*
a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d^2*e + (c*d^3 + a*d*e^2)*x)*s
qrt(a*e/d) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/
x, 1/4*(2*(3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (
c*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) + (c*d^2 + 3*a*e^2)*sqrt
(c*d/e)*x*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 4*(2*c*d*e^2*x + c*d^2*e + a*e^3)*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d/e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + 4*sqrt(c*d*e*x^2 + a*d*e +
(c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x, -1/2*((c*d^2 + 3*a*e^2)*sqrt(-c*d/e)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e
+ (c*d^2 + a*e^2)*x)*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d/e)/(c^2*d^2*e*x^2 + a*c*d^2*e + (c^2*d^3 + a*c*d*e^
2)*x)) - (3*c*d^2 + a*e^2)*sqrt(-a*e/d)*x*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c
*d^2 + a*e^2)*x)*sqrt(-a*e/d)/(a*c*d*e^2*x^2 + a^2*d*e^2 + (a*c*d^2*e + a^2*e^3)*x)) - 2*sqrt(c*d*e*x^2 + a*d*
e + (c*d^2 + a*e^2)*x)*(c*d*x - a*e))/x]

Sympy [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{x^{2} \left (d + e x\right )}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**2/(e*x+d),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(x**2*(d + e*x)), x)

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )} x^{2}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)*x^2), x)

Giac [A] (verification not implemented)

none

Time = 0.37 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.41 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e} c d + \frac {{\left (3 \, a c d^{2} e + a^{2} e^{3}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{\sqrt {-a d e}} - \frac {{\left (c^{2} d^{3} + 3 \, a c d e^{2}\right )} \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{2 \, \sqrt {c d e}} - \frac {{\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a c d^{2} e + {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} e^{3} + 2 \, \sqrt {c d e} a^{2} d e^{2}}{a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^2/(e*x+d),x, algorithm="giac")

[Out]

sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e)*c*d + (3*a*c*d^2*e + a^2*e^3)*arctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*
x^2 + c*d^2*x + a*e^2*x + a*d*e))/sqrt(-a*d*e))/sqrt(-a*d*e) - 1/2*(c^2*d^3 + 3*a*c*d*e^2)*log(abs(-c*d^2 - a*
e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/sqrt(c*d*e) - ((sqrt(c*d*e
)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a*c*d^2*e + (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e
^2*x + a*d*e))*a^2*e^3 + 2*sqrt(c*d*e)*a^2*d*e^2)/(a*d*e - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x
 + a*d*e))^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^2 (d+e x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{x^2\,\left (d+e\,x\right )} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^2*(d + e*x)), x)